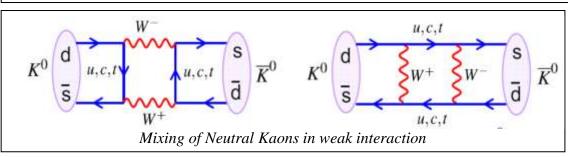
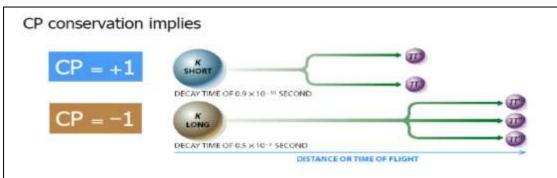
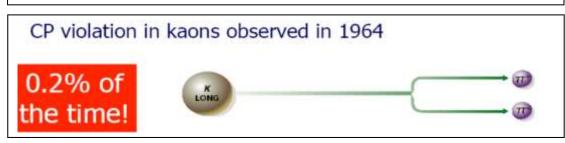
NEUTRAL KAONS

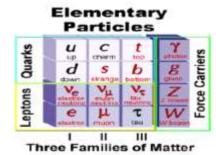

Faridah Mohamad Idris^{1,2}, Wan Ahmad Tajuddin Wan Abdullah², Zainol Abidin Ibrahim².

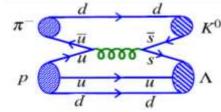

¹Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor D.E. Malaysia ²National Centre for Particle Physics (NCPP), Universiti Malaya, 50603 Kuala Lumpur


Abstract. In charge conjugate and parity violation (CPV) study, neutral kaons K_s^0 and K_L^0 gives an interesting comparison. Even though both have slight difference in mass, the latter has greater phase space than the former and shows that it violates CPV through its decay into π^{\pm} . This paper reviews aspects of the CPV violations of these neutral kaons.

Introduction. Neutral Kaons K_S^0 and K_L^0 are mesons with branching ratio K_S^0 (50%), K_L^0 (50%): They represent symmetric and antisymmetric mixtures of the quark combinations down-antistrange ($d\bar{s}$) and antidown-strange ($\bar{d}s$). The quark mixing in these combinations involves the exchange of two W bosons. They decay via weak interaction and are used in the study of charge conjugate and parity violation (CPV).

Table 1. properties of Neutral Kaons		
Neutral Kaons	K-zero-short: K_S^0	K-zero-long: K_L^0
quark combinations	$\frac{\psi(d\overline{s}) + \psi(\overline{d}s)}{\sqrt{2}}$	$\frac{\psi(d\overline{s}) + \psi(\overline{d}s)}{\sqrt{2}}$
Lifetime	8.95×10 ⁻¹¹ s	$5.11 \times 10^{-8} s$
Decay length	2.6842cm	15.33m
Decay (hadronic)	$K_S^0 \to \pi^+ + \pi^-(31.69\%)$	$K_L^0 \to \pi^+ + \pi^- + \pi^0 (12.56\%) \text{ (CP=-1)}$
modes	$K_S^0 \to \pi^0 + \pi^0 (69.20\%)$	$K_L^0 \to \pi^0 + \pi^0 + \pi^0 (19.56\%) \text{ (CP=-1)}$
	$K_s^0 \rightarrow \pi^+ + \pi^- + \pi^0 (3.5 \times 10^{-7})$	$K_L^0 \to \pi^+ + \pi^- (1.98 \times 10^{-3} \%) \text{ (CP=+1)}$
		$K_L^0 \to \pi^0 + \pi^0 (8.69 \times 10^{-4} \%) \text{ (CP=+1)}$
Mass K ⁰	0.498GeV	
Mass difference	$\Delta m = m_{K_I} - m_{K_S} = 3.483 \times 10^{-12} \ MeV$	
Oscillation period	$T_{osc} = \frac{2\pi\hbar}{\Delta m} \approx 1.2 \times 10^{-9} \mathrm{s}$	
Ratio	K_S^0 (50%)	K_L^0 (50%)
$I(J^P)$	$\frac{1}{2}(0^{-})$	$\frac{1}{2}(0^{-})$
Note:	$I^{G}(J^{P})\pi^{\pm} = 1^{-}(0^{-}); I^{G}(J^{P})\pi^{0} = 1^{-}(0^{-+});$	




Distance from K⁰ production

 $K_L \rightarrow \pi \pi \pi$

Standard Model of Particle Physics

$$\pi^-(d\overline{u}) + p(uud) \rightarrow \Lambda(uds) + K^0(d\overline{s})$$

 $\pi^+(u\overline{d}) + p(uud) \rightarrow K^+(u\overline{s}) + \overline{K}^0(s\overline{d}) + p(uud)$
Neutral Kaons produced in strong interaction.

Feynman diagram of Neutral Kaons in strong interaction.

Strong eigenstates Neutral Kaon:

$$K^0(d\overline{s})$$
 and $\overline{K}^0(s\overline{d})$ have $J^P=0^-$
Decay of Neutral Kaons:

$$|K_0\rangle = \frac{1}{\sqrt{2}}(|K_S\rangle + |K_L\rangle)$$

CP is violated in the decay (direct CPV)

$$|\mathsf{K}_L\rangle = |\mathsf{K}_2\rangle \rightarrow |\pi\pi\rangle$$

 $\mathsf{CP}\text{=-1} \rightarrow \mathsf{CP}\text{=+1}$

$$CP = |K^{0}\rangle \langle \overline{K}^{0}| + |\overline{K}^{0}\rangle \langle K^{0}|.$$

Energy of K_S: $\omega_S = \sqrt{p^2 + m_S^2}$,

Energy of K_L : $\omega_L = \sqrt{p^2 + m_L^2}$,

Probability to find K₀ undecayed at time t with life time $\tau_S = 1/\Gamma_S$:

$$P(t) = e^{-\Gamma_S t}$$
.

$$\psi(t) = e^{-i\omega_S t - \Gamma_S t/2} |K_S^0\rangle.$$

 $\psi(t) = e^{-i\omega_L t - \Gamma_L t/2} |K_L^0\rangle.$

Probability of finding K_0 at time t:

$$P_{K^0}(t) = |\langle K^0 | \psi(t) \rangle|^2$$

 $= \frac{1}{2} |\langle K^0 | K_S^0 \rangle e^{-i\omega_S t - \Gamma_S t/2} - \langle K^0 | K_L^0 \rangle e^{-i\omega_L t - \Gamma_L t/2}|^2$

Decays to Two Pions:

$$\star K^0 \to \pi^0 \pi^0$$
 $J^P: 0^- \to 0^- + 0^-$

$$J^P: 0^- \to 0^- + 0^-$$

Decays to Three Pions:

$$\bigstar K^0 \to \pi^0\pi^0\pi^0$$

$$J^{P}: 0^{-} \rightarrow 0^{-} + 0^{-} + 0^{-}$$

- For two pion decay energy available: $m_K 2m_\pi \approx 220\,\mathrm{MeV}$
- For three pion decay energy available: $m_K 3m_\pi \approx 80 \,\mathrm{MeV}$

$$|K_S\rangle = |K_1\rangle \equiv \frac{1}{\sqrt{2}}(|K^0\rangle - |\overline{K}^0\rangle)$$
 with dec

with decays:
$$K_S o \pi\pi$$

$$|K_L\rangle = |K_2\rangle \equiv \frac{1}{\sqrt{2}}(|K^0\rangle + |\overline{K}^0\rangle)$$

with decays: $K_L \to \pi\pi\pi$