

nologi Nuklear Pemacu Wawasan Negara' Jear Technology Propels The Nation Vision'

Optimization of Oil Recovery Using Heated Low Salinity Water (HLSW) in the Horizontal Sand Pack Column during Water Flooding: <u>Radiotracer Intervention</u>

> <u>Noraishah Othman^{*,1}, Akram Mujaddid</u> Bin Abdul Halim², Muhammad <u>Firdaus</u> <u>Hakimi</u> bin <u>Mohd</u> Zulkarnain³, <u>Nazrul Hizam</u> Yusoff¹

¹Industrial Technology Division, Malaysian Nuclear Agency, 43000, Kajang, Selangor, Malaysia

²Faculty of Science and Technology, <u>Universiti Sains</u> Islam Malaysia (USIM), Bandar Baru Nilai, 71800, Nilai, Negeri Sembilan, Malaysia

³Fakulti Sains Gunaan, Universiti Teknologi MARA Perlis, 02600, Arau, Perlis, Malaysia

WHAT IS ENHANCED OIL RECOVERY (EOR)?

Source: https://petgeo.weebly.com/thereservoir.html

WHAT IS RADIOTRACER?

m

β

OBJECTIVES

- □ To optimize the process parameters of water-flooding activity for enhancing oil recovery
- To diagnose any process anomalies using Residence Time Distribution measurement

METHODOLOGY: Optimization Experiment

SABIB/V

Table 1. Composition of formation water and low salinity water

n	Chemicals	Formation Water	Brine Solution (100ppm)		
2	NaCl(g)	28.295	0.1		
6	<u>CaCl(g)</u>	0.887	-		
	MgSO ₄	0.079	-		
	Distilled Water (L)	1	1		
C	Tapis Oil (viscosity)	0.001382 Pa.s (1.382cP)			
	Temperature (°C)	-	50,70,90		
	Flow rate (ml/min)	-	1,2,3		

METHODOLOGY: Radiotracer Experiment

RESULTS

Table 2. Oil Recovery from Various Salinity Concentration

Authors	Remarks	Arrangement of column	Original Oil In Place (OOIP) (%)
Present study	Heated Low Salinity Water (HLSW)(100ppm)	Horizontal	73.0
Noraishah Othman et al. (2022)	300 ppm	Vertical	62.1
N.Othman et al. (2021)	500 ppm	Vertical	66.7
Danial Azim Che Aziz et al. (2020)	15 wt% kaolinite concentration	Horizontal	55%
Noraishah Othman (2020)	30,000 ppm brine solution	Horizontal	38.37%

RADIOTRACER EXPERIMENTS

Nucle

RESIDENCE TIME DISTRIBUTION (RTD) ANALYSIS

	Parameters								SSE	
Models	Pe	Ν	$ au_1$	τ_2	J_1	J_2	Tm	Κ	Q_1/Q_2	-
Axial dispersed plug flow	1.5		4636							0.762x10 ⁻ 9
Axial dispersed plug flow with exchange	1.1	1.0	2910		1.0					0.753 x10 ⁻⁹
Perfect mixers in series			4325		1.4					1.46 x10 ⁻ 9
Perfect mixers in series with exchange			1824		4.4		4800	3.3		0.364 x10 ⁻⁹
Perfect mixers in parallel			4434	313	0.73	1.0			1.2	0.805 x10 ⁻⁹
Perfect mixers with recycle			8571	-173	185	0.32 x10 ⁷			5.9	0.463 x10 ⁻⁹

(

Table 3. Sum of Squares Sum of Squares Error

*τ=mean residence time, J= Number of tanks, Pe=Peclet number, k=V₁/V₂, T_m=residence time for exchange zone Nuklear Malaysia

Flow mechanism of perfect mixers with exchange model (IAEA 2008)

CONCLUSIONS

Heated Low Salinity Water (100ppm, 3ml/min and 70°C) increases the oil recovery

The perfect mixers with exchange model –RTD Model

Presence of two zones: active and stagnant zone

MRT for stagnant zone is longer than active zone

Necessary action should be conducted by reservoir engineer to modify the wettability and reduce the IFT or increase the sweep efficiency of oil

